LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – PHYSICS SECOND SEMESTER – APRIL 2010

PH 2501 - MECHANICS (UP TO 2007 BATCH)

Date & Time: 20/04/2010 / 1:00 - 4:00	Dept. No.	Max. : 100 Marks

PART – A

Answer ALL questions:

(10x2=20 Marks)

- 1. What is a compound pendulum?
- 2. Find out the rigidity modulus of a wire, 1m in length, 10⁻³m in diameter, if the period of torsional oscillation of it with a metallic disc is 4sec. (I=0.005kgm²).
- 3. Distinguish between concurrent and parallel forces.
- 4. Define centre of pressure.
- 5. State Fick's law.
- 6. State Graham's law of diffusion.
- 7. State the principle of virtual work.
- 8. Explain D'Alembert's principle.
- 9. Define a frame of reference.
- 10. An electron is moving with a speed of 0.85c in a direction opposite to that of a moving photon. Calculate the relative velocity of the photon.

PART – B

Answer any FOUR questions:

(4x7.5=30 Marks)

- 11. a) Define centre of oscillation and centre of suspension of a compound pendulum.
 - b) Show that the two are interchangeable.

(3+4.5)

- 12. Derive an expression for the centre of pressure of a rectangular lamina.
- 13. a) Explain Torricelli's theorem.
 - b) Obtain an expression for the velocity of efflux of a liquid.

(2.5+5)

- 14. a) What is meant by configuration of space?
 - b) How is this concept used to describe the motion of a system of particles?

(2.5+5)

- 15. a) What is Newtonian relativity?
 - b) Show that acceleration is invariant under Galilean transformation.

(2.5+5)

(P.T.O.)

PART - C

Answer any FOUR questions:

(4x12.5=50 Marks)

- 16. Obtain an expression for the period of oscillation of a Biflar pendulum with parallel threads.
- 17. Find out the positions of the centre of pressure of a triangular lamina immersed in a liquid with its (i) vertex and (ii) base, touching the surface of the liquid. (6+6.5)
- 18. a) State and prove Bernoulli's theorem.
 - b) Water flows along a horizontal tube of which the cross-section is not a constant. Calculate the change in pressure when the velocity of flow changes from 0.1m/s to 0.2m/s.

(2+8+2.5)

- 19. a) State and prove the laws of conservation of linear momentum, angular momentum and energy for a system of interacting particles. (3x3)
 - b) By applying Lagrange's equations of motion, find out the acceleration of a simple pendulum. (3.5)
- 20. a) State and explain the basic postulates of Einstein's special theory of relativity. (3.5)
 - b) Discuss length contraction and time dilation with illustrations. (2x4.5)

\$\$\$\$\$\$\$